The number $2023$ is expressed in the form
$2023 = \frac {a_1!a_2!...a_m!}{b_1!b_2!...b_n!}$,
where $a_1 \ge a_2 \ge ... \ge a_m$ and $b_1 \ge b_2 \ge ... \ge b_n$ are positive integers and $a_1 + b_1$ is as small as possible. What is $|a_1 - b_1|$?
$\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 5$
Answer: D, 4
2023=$\cfrac{7!17!6!}{13!13!7!5!5!2!2!2!2!}$
AMC 10/12 exam time:
A: Nov. 10, 2022
B: Nov 16, 2022
AMC 8: January, 17-23, 2023
Archive